

恩创水浸传感器 AVC-ES101WL 使用手册

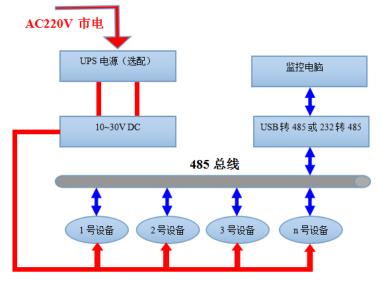
目录

1.	产品介绍	. 1
	安装使用	
3.	配置软件安装及使用	. 3
4.	通信协议	. 4
	4.4.1 读取设备地址 0x01 的设备 0 号寄存器水浸状态	. 5
	4.4.2 读取设备地址 0x01 的设备 2 号寄存器水浸状态	. 6
5.	常见问题及解决办法	. 7

1. 产品介绍

1.1 产品概述

恩创水浸传感器广泛适用于通讯基站、宾馆、饭店、机房、图书馆、档案库、仓库、设备机柜以及其它需积水报警的场所。采用独有的交流检测技术,有效避免了浸水电极长时间工作氧化导致漏水灵敏度下降的问题。该设备 485 输出,标准 ModBus-RTU,最远通信距离 2000 米,可直接接入现场的 PLC、工控仪表、组态屏或组态软件。外接漏水电极最远可达 30 米,亦可外接长达 30 米漏水绳。该设备采用防水外壳,防护等级高,可长时间应用于潮湿、高粉尘等恶劣场合。


1.2 功能特点

交变电流采集积水的电感参数,能够准确区分是否发生水浸,甚至可以区分纯净水与自来水(默认以自来水为检测对象,若要检测纯净水请特殊说明)。因为采用交变电流检测,电极即使长时间浸泡也不会产生电泳极化,不依赖特殊电极,做到寿命长、检测可靠。

1.3 主要技术指标

Z-1 -4 H 1-4 -					
供电	DC10-30V				
最大功耗	RS485 输出	0.4W			
检测对象	检测对象 自来水、纯净水				
变送器电路工作温度	-20℃~+60℃,0%RH~95%RH(非结露)				
输出信号	RS485 输出	ModBus-RTU 协议			

1.4 系统框架图

系统方案图

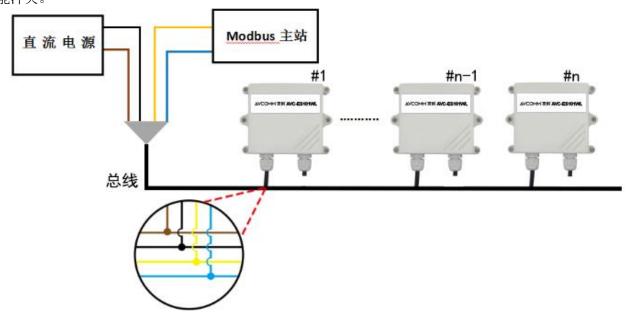
2. 安装使用

2.1 设备安装前检查

设备清单:

- ■水浸传感器设备1台
- ■自攻螺丝(2个)、膨胀塞(2个)
- ■合格证、保修卡、接线手册等

■USB 转 485 (选配)


2.2 安装步骤说明

2.3 接线

2.3.1 电源及 485 信号接线

宽电压电源输入 10~30V 均可。485 信号线接线时注意 A/B 两条线不能接反,总线上多台设备间地址不能冲突。

2.4 具体型号接线

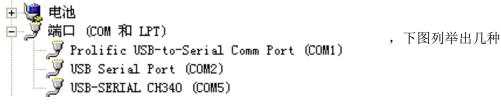
	电源正 (棕色) (10~30V DC)
电源	电源负(黑色)
46.11.	485-A(黄色)
输出	485-B(蓝色)

2.5 漏水绳的使用

若搭配漏水绳使用需注意,漏水绳黑色线为漏水感应线,黄色线为支撑架,漏水绳首尾两端黑色感应 线不要相互触碰。将水浸端子固定后,把水浸端子护套凸起处按照箭头所示方向套入水浸端子。

3. 配置软件安装及使用

AVC-ES101WL



3.1 软件选择

打开资料包,选择"调试软件"---"485参数配置软件"打开即可。

3.2 参数设置

①选择正确的 COM 口不同的 485 转换器的驱ž

- ②单独只接一台设备并上电,点击软件的测试波特率,软件会测试出当前设备的波特率以及地址,默认波特率为 4800bit/s,默认地址为 0x01。
- ③根据使用需要修改地址以及波特率,同时可查询设备的当前功能状态。
- ④如果测试不成功,请重新检查设备接线及485驱动安装情况。

4. 通信协议

4.1 通讯基本参数

编码	8 位二进制
数据位	8 位
奇偶校验位	无
停止位	1 位
错误校验	CRC (冗余循环码)
波特率	2400bit/s、4800bit/s、9600 bit/s 可设,出厂默认为 4800bit/s

使用手册

4.2 数据帧格式定义

采用 Modbus-RTU 通讯规约,格式如下:

初始结构 ≥4 字节的时间

地址码 =1 字节

功能码 = 1 字节

数据区 = N 字节

错误校验 = 16 位 CRC 码

结束结构 ≥4 字节的时间

地址码:为变送器的地址,在通讯网络中是唯一的(出厂默认 0x01)。

功能码: 主机所发指令功能指示, 本变送器只用到功能码 0x03 (读取寄存器数据)。

数据区:数据区是具体通讯数据,注意 16bits 数据高字节在前!

CRC 码: 二字节的校验码。

主机问询帧结构:

地址码	功能码	寄存器起始地址	寄存器长度	校验码低字节	校验码高字节
1 字节	1字节	2 字节	2 字节	1 字节	1 字节

从机应答帧结构:

地址码	功能码	有效字节数	数据一区	数据二区	数据N区	校验码低字节	校验码高字节
1字节	1字节	1字节	2字节	2字节	2字节	1字节	1字节

4.3 寄存器地址

寄存器地址	PLC 或组态地址	内容	操作	功能码	默认值	定义说明
0000 H	40001 (十进制)	实时水浸状态	只读	03	0	0表示正常,1表示有水
0002 H	40003 (十进制)	实时水浸状态	只读	03	1	1表示正常,2表示有水
0033 H	40052 十进制)	报警延时	读/写	03/06	0S	16 位无符号,默认为 0s 0~65535s 可设
0034Н	40053(十进制)	当前灵敏度	读/写	03/06	102	16位无符号, 0~1024可设

4.4 通讯协议示例以及解释

4.4.1 读取设备地址 0x01 的设备 0 号寄存器水浸状态

问询帧:

地址码	功能码	起始地址	数据长度	校验码低字节	校验码高字节
0x01	0x03	0x00 0x00	0x00 0x01	0x84	0x0A

应答帧: 水浸状态正常的应答

地址码	功能码	返回有效字节数	数据区	校验码低字节	校验码高字节
-----	-----	---------	-----	--------	--------

4	AVCOMM [®] 恩创 [®]
---	-------------------------------------

0x01 0x03 0x02 0x00 0x00 0xB8 0x44

应答帧: 水浸状态有水的应答

地址码	功能码	返回有效字节数	数据区	校验码低字节	校验码高字节
0x01	0x03	0x02	0x00 0x01	0x79	0x84

4.4.2 读取设备地址 0x01 的设备 2 号寄存器水浸状态

问询帧:

地址码	功能码	起始地址	数据长度	校验码低字节	校验码高字节
0x01	0x03	0x00 0x02	0x00 0x01	0x25	0xCA

应答帧: 水浸状态正常的应答

地址码	功能码	返回有效字节数	数据区	校验码低字节	校验码高字节
0x01	0x03	0x02	0x00 0x01	0x79	0x84

应答帧: 水浸状态有水的应答

地址码	功能码	返回有效字节数	数据区	校验码低字节	校验码高字节
0x01	0x03	0x02	0x00 0x02	0x39	0x85

4.4.3 修改报警延时

问询帧:修改延时时间为10s

地址码	功能码	起始地址	数据长度	校验码低字节	校验码高字节
0x01	0x06	0x00 0x33	0x00 0x0A	0xF9	0xC2
应答帧:	•				
地址码	功能码	起始地址	数据长度	校验码低字节	校验码高字节

地址码	功能码	起始地址	数据长度	校验码低字节	校验码高字节
0x01	0x06	0x00 0x33	0x00 0x0A	0xF9	0xC2

若10s内连续监测到浸水、设备报警。

4.4.4 设置水浸灵敏值(以300为例)

问询帧:

地址码	功能码	起始地址	数据长度	校验码低字节	校验码高字节
0x01	0x06	0x00 0x34	0x01 0x2C	0xC8	0x49

应答帧: 当前灵敏度为300

地址码	功能码	起始地址	数据长度	校验码低字节	校验码高字节
0x01	0x06	0x00 0x34	0x01 0x2C	0xC8	0x49

灵敏度设置说明

灵敏度值和实际灵敏度成反比,既设置值越大设备检测越不敏感,灵敏度值越小设备检 测越敏感。但应注意:灵敏度值过小,容易造成误报,建议使用出厂默认值。

默认值: 102 范围: 0-1024

5. 常见问题及解决办法

5.1 设备无法连接到 PLC 或电脑

可能的原因:

- 1)电脑有多个 COM 口,选择的口不正确。
- 2)设备地址错误,或者存在地址重复的设备(出厂默认全部为1)。
- 3)波特率,校验方式,数据位,停止位错误。
- 4)主机轮询间隔和等待应答时间太短,需要都设置在 200ms 以上。
- 5)485 总线有断开,或者 A、B 线接反。
- 6)设备数量过多或布线太长,应就近供电,加 485 增强器,同时增加 120 Ω 终端电阻。
- 7)USB 转 485 驱动未安装或者损坏。
- 8)设备损坏。